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J. Phys. A Math. Gen. 25 (1992) 3275-3285. Printed in the UK 
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Abstract. The SU&) symmetry of the y-rotator mode!, which for rotational bands 
predicts squeezing of the energy levels equivalent to the variable moment of inertia 
(VMI) model, predicts an increase with angular momentum of the B(E2) transition 
probabilities among these levels, while the rigid rotor model predicts saturation and the 
interacting boson model (mM) predicts a decrease. Some evidence supparting the SU&) 
prediction is presented. The passible usefulness of the quantum algebraic method in 
cacnding thc WI concept to B(E2) transition probabilities is pointed out. 

Quantum algebras [14],  which from the mathematical point of view are Hopf algebras 
as pointed out in [3], are recently attracting much attention in physics, especially 
after the introduction of the q-deformed harmonic oscillator [5-71. Initially used 
for solving the quantum Yang-Baxter equation [8,9], they have now been used in 
conformal field theories [10,11] and in the description of spin chains [12,13]. The 
description of squeezed states in term of qdeformed coherent states [14] has also 
been attempted [U]. In nuclear physics, the q-rotator model with SU,(2) symmetry 
has been successfully used for the description of rotational bands of deformed [16,17] 
and superdeformed (181 nuclei, its equivalence to the variable moment of inertia (VMI) 
model [19] having been demonstrated [17]. The SU9(2) and SU9(l,l) symmetries 
have also been successfully used for the description of rotational [20] and vibrational 
[21,22] spectra of diatomic molecules. Much progress has also been made in the 
q-generalization of the theory of angular momentum [23-301. 

The Hamiltonian of the protator model with the symmetry SU,(2) consists of 
the secondader Casimir operator of SU,(2). This Hamiltonian can be rewritten 
[17] as an expansion in powers of j ( j  + 1). In this form the equivalence. of this 
Hamiltonian to the VMI formula for energy levels becomes apparent. In addition the 
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deformation parameter T (with q = e'.) acquires a well defined physical meaning, by 
being connected [17] to the softness parameter of the VMI model. 

Although the VMI formalism is very successful in describing energy levels, no 
extension of it to the description of the B(E2) transition probabilities connecting these 
levels has been constructed. From the physical point of view, however, if deviations 
from the rigid-rotator predictions are seen in the energy levels, deviations should also 
be Seen in the B(E2) transition probabilities connecting these levels. The SU,(2) 
formalism provides the means for such a connection. The SU,(2) symmetry predicts 
a continuous increase of the B(E2) values with angular momentum j, while the rigid 
rotator predicts saturation at high j and the interacting boson model (IBM) ([31]; 
for recent overviews see [32,33]), the successful algebraic model for the description 
of low-lying collective nuclear spectra in medium- and heaymass nuclei, predicts a 
decrease. It is therefore of interest to check whether this prediction of the SU,(2) 
symmetry is supported by the experimental data or not. A f i t  test of this prediction 
is the subject of this paper. 

q-numbers are defied as 

In the case of q = er ,  where r is real, they take the form 

sin h(  r z )  
I X 1 =  sinh(r)  

while in the m e  in which q is a phase (q = eir, with r real) they can be written as 

s in ( rx )  
s in ( r )  (3) 

It is clear that in both cases the q-numbers go to the usual numbers as q -+ 1 (or 

In the quantum case the generators of SU,(2) satis& the commutation relations 
r i e). 

[5-71 

[Jo,J*] = *J* [ J + ,  5-1 = [2J01. (4) 

The commutation relations take the well known classical form in the limit q -+ 1. 

vector l j j )  which satisfies the equations 
The irreducible representation (irrep) Dj of highest weight j contains the highest 

J*ljj) = 0 Joljj) = jljj) (jjljj) = 1 ' (5) 

'!le gener.! hzsis ve~ter  wi!h weigh! m of thic irrep can be constructed through use 
of the lowering operator J -  
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where the q-factorial is defied as 

["I! = [a][n - 1][" - 21 ' .  ' [2][1] 

The second-order Casimir operator of SUq(2) is (5-71 

C2[SUq(2)] = J- J+ + [Jol[Jo + 11 = J+J- + [Jol[Jo - 11 (8) 

AU of the above equations go to their classical counterparts for q + 1 (T - 0). 
A q-rotor is a system with Hamiltonian [16-181 

H = --C2[SUq(2)] + Eo (10) 
1 

2 1  

where I is the moment of inertia and E,, is the bandhead energy (for ground-state 
bands E,, = 0). In the case of q being a phase (q  = e") one obtains 

1 , .  1 s i n ( r j )  s i n ( r ( j  + 1)) 
Ej = $][j + 11 + E - - - 2 1  sin2(r)  +Eo. (11) 

If q is real (q = er), the trigonomewic functions in (11) should be substituted by 
hyperbolic ones. It should be noticed that this Hamiltonian, which is a scalar under 
S U  (2). is also a scalar under SU(2) [34], and that the quantum number j appearing 
in (11) is the usual SU(2) angular momentum [34]. 

By making Taylor expansions of the quantities in the numerator of (ll), collecting 
together the terms containing the same powers of j ( j  + 1) (all other terms cancel 
out) and finally summing up the coefficients of each power one obtains the following 
series [17]. 

where j ,(r) are the spherical Bessel functions of the first kind [35]. For small values 

only the lowest-order term in each expansion one obtains 
of one can h r ~ e r  expand sphericai Be& fuiicri'ons appeaf"ig in (12). Keepifig 

This result is of the form 

E; = Eo + A j ( j  + 1) + B ( j ( j  + + C ( j ( j  + + D ( j ( j  + 1))4 + .. . (14) 
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which is the expansion in terms of powers of j(j + 1) used for fitting experimental 
rotational spectra [36]. Empirically it is known that the coefficients A, B, C, D, . . . 
have alternating signs, starting with A positive. In addition, each coefficient is smaller 
than the preceding one by about three orders of magnitude. 

Equation (11) has been found suitable for the description of rotational spectra 
[la, 171 with T around 0.03. The pattern of alternating signs is already present in (13). 
For r around 0.03 the order of magnitude of the coefficients is also the correct one, 
since each term contains a factor r2 more than the previous one. For T in the 
region of 0.03, rz is of the order of as it should be. It is clear therefore 
that (13) is suitable for fitting rotational spectra, since its coefficients have the same 
characteristics as the empirical coefficients of (14). Examples of fits and parameter 
values are given in [la,  171. In all cases the fits are of very good accuracy. 

The same kind of expansion can be obtained in the framework of the VMI [19] 
m&i, in tLNs E,&e; the iev& of the gmun&-stdte band are given cv 

where C and 0, are the two free parameters of the model, the latter being the 
ground-state moment of inertia. The moment of inertia for each j is determined 
from the variational condition 

BE3 
mij = O .  

One can obtain [17] the following expansion for the energy: 

It is known [19] that C and 0, take on positive values, while 

is the softness parameter, which for rotational nuclei is of the order of [19]. 
Thus the coefficients of the expansion of (17) have the proper signs and orders of 
magnitude. 

Comparing (13) and (17) we see that both expansions have the same form. The 
moment of inertia parameter I of (13) corresponds to the ground-state moment of 
inertia 0, of (17). The small parameter of the expansion is T* in the f i t  case, 
while it is the softness parameter 1/ (2C08)  in the second. When these formulae 
are used for fitting experimental data, the a reement between 1/(21) and 1 / ( 2 0 , )  

of the SU,(2) model (the deformation parameter T )  turns out to have a well defined 
physical meaning, by being related to the softness parameter of the VMI model. 

It should be noted that for real q the coefficients of the expansion similar to (13) 
are all positive, so that the corresponding spectrum increases more rapidly than the 
j(j + 1) rule, thus being unable to fit the experimental data, in which an increase 
slower than the j ( j  + 1) rule is observed. 

is very good, as is the agreement between T i and U. Therefore the extra parameter 
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The stretching effect present in rotational energy levels, which can equally well be 
described in terms of the VMI model and the SUq(2) symmetry, should also manifest 
itself in the B(E2) transition probabilities among these levels. If deviations from 
the SU(2) symmetry are observed in the energy levels of a band, relevant deviations 
should also appear in the B(E2) transitions connecting them. In the case of the W I  
model no way has been found for making predictions for the B(E2) transition prob- 
abilities connecting the levels of a collective band. The SU,(2) symmetry naturally 
provides such a link. In rotational bands one has [37] 

i.e. the B(E2) transition probability depends on the CIebschGordan coefficient of 
SU(2), while Qa is the intrinsic electric quadrupole moment and k is the projection 
of the anguiar momentum j on the symmetry axis of the nucieus in the body-fied 
frame. For k = 0 bands one then has [37] 

which gives the well known saturation of the B(E2) values with increasing j .  

nuclei, the corresponding expression is (311 
In the case of the SU(3) limit of the IBM, which is the limit applicable to deformed 

(21) 
5 23 (j + l)(j + 2) ( 2 N  - j ) ( Z N  t j + 3) B( E2 : j + 2 - j )  = -Qo- . 

16rr 2 (23 + 3)(2j  + 5)  ( 2 N  + 3/2)2 

where N is the total number of bosons. Instead of saturation one then gets a decrease 
of the B(E2) values at high j, which finally reach zero at j = 2 N .  This is a well 
known disadvantage of the simplest version of the model (IBM-1) due to the small 
number of collective bosons-s ( j  = 0) and d ( j  = Z)-taken into account. It can 
be corrected by the inclusion of higher bosons (g (j = 4), i ( j  = a), etc), which 
approximately restore saturation (see [32,33] for a full list of references). 

Another way to avoid the problem of decreasing B(E2)s in the SU(3) l i t  of 
the IBM at  high j is the recently proposed (381 transition from the compact SU(3) 
algebra to the nonampact SL(3,R) algebra. The angular momentum at which this 
transition takes place is fitted to experiment. In this way an increase of the B(E2) 
values at high j is predicted, which agrees well [38] with the experimental data for 
2%. 

In order to derive a formula similar to (20) in the SUq(2) case, one needs 

the SU,(2) algebra are already defined [23-281, and the q-deformed version of the 
Wiper-Eckart theorem, needed in the derivation of the q-generalization of (19), 
is also known 129,301. In addition, the qdeformed versions of ClebschGordan 
coefficients, 3-j symbols, 6-j symbols and their inter-relations are known 123-303. I t  
turns out that an equation similar to (19) holds in the q-deformed case, the only 
difference being that the Clebsch-Gordan coefficient of the SUq(2) algebra must be 
used instead. These coefficients have the form (24,281 

tu dev,iop an suqjij aii@iai momentum .&euijj. ine;uci;;e i8i&Ol qjeraion fur 
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where q-numbers are defmed as before. For 12 = 0 bands one then has 

For q = eir this equation takes the form 

~ Bq(E2 : 3’ + 2 - 3’ )  
5 

-Qi(sin(3r) sin(4r)(sin(s(j  + 1)))2(s in(r( j  + 2)))’) 16n 
x (sin(Zr)sin(s)Sin(T(Zj + 2 ) ) s i n ( ~ ( 2 j  + 3 ) )  

= 

x s i n ( r ( 2 j  + 4 ) ) s i n ( ~ ( 2 j  + 5 ) ) ) - ’ .  (24) 

Before attempting any comparison to experimental data, it is useful to get an idea 
of the behaviour of this expression as a function of j ,  especially for the small values 
of I found appropriate for the description of ground-state spectra. Expanding all 
fuoctions and keeping corrections of the leading order in T only, one has 

We see that the extra factor, which depends on rz, contributes an extra increase 
with j, while the usual SU(2) expression reaches saturation at high j and the IBM 
even predicts a decrease. 

Is there any experimental evidence for such an increase? In order to answer 
this question one should discover cases in which the data will be consistent with the 
SU,(2) expression but inconsistent with the classical SU(2) expression. (The opposite 
cannot happen, since the classical expression is obtained from the quantum expression 
for the special parameter value T = 0.) Since error bars of B(E2) values are usually 
large, in most cases both symmetries are consistent with the data. One should expect 
the differences to show up more clearly in two cases: 

(1) in rare-earth nuciei not very much deformed (i.e. wiih an it4 = E4/ E, ratio 
around 3.0). These should be deformed enough so that the SUq(2) symmetry will be 
able to describe them having, however, at the same time values of T not very small. 
Since in several of these nuclei backbending (or upbending) occurs at j = 14 or 16, 
one can expect only 5 or 6 experimental points with which to compare the theoretical 
predictions. 

(ii) In the actinide region no backbending occurs up to around j = 30, so that 
this is a better test ground for the two symmetries. However, most nuclei in this 
region are well deformed, so that small values of T should be expected, making the 
distinction between the two theoretical predictions difficult. 

A few characteristic examples (four rare earths and an actinide) are given in 
tables 1-3. In all cases a least-square fit was obtained, the quality of which is mea- 
sured by 

In.. 
U = \i - x ( B ( E 2 :  j + 2 + j ) e x p  - B(E2 : j + 2 * J ’ ) ~ ~ ) ’  (26) 

n 
lmirr 
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h b l e  1. B(E2 j - j - 2) transition probabilities (in Weisskopf units) for 152Sm and 
'%d. Data were taken from [39] and 1401 respectively. The quantities in parentheses 
indicate uncertainties. The SU,(2) fit was obtained using (24). v is given by (24). 

j 152Sm l S 2 ~ ~  1 5 2 ~ ~  l Y a  l 5 4 ~ d  1 S k a  

exp SU&) SLJ(2) exp sum S W )  
~~~ 

2 143 (3) 142 166 157 (2) 163 187 

6 245 (5) 246 261 m (14) n 9  295 

10 320 (30) 322 280 361 (33) 358 317 

4 iirjl (3) ZiU 
237 245 (8) 240 m 

8 285 (14) 280 273 311 (17) 315 308 

~ 

A 707 829 810 936 
T 0.039 0.0 0.037 0.0 
(I 2.42 25.50 4.13 26.44 
R4 3.009 3.015 

Table 2 Sane as table 1, hut for l'W and lssOs. Data were taken from [411 and [42]. 

j 1%' 184w 1edw IEaos 1880s 1880% 

s"" -7 <I1 "-,,-, 17\ Q1,11> ".,,., -..r s q q  9Lq) 

2 119 (3) 106 137 76 (3) 75 92 
4 160 (14) 160 1% 121 (6) 113 131 
6 183 (10) 195 216 131 (9) 134 144 
8 2% (21) U 5  226 146 (24) 156 151 
10 292 (60) 292 232 190 (50) 185 155 

A 524 686 374 458 
r 0.050 0.0 0.044 0.0 
,J 7.97 35.89 6.40 18.78 
Ro 3.274 3.083 

where n is the number of points used in the fit. The overall scale A = 5Qt/(16x) 
has been treated as a free parameter in both SU,(2) and SU(2), while in SU,(2) 
the deformation parameter T was also free. In all cases it is clear that the SU,(2) 
curve follows the experimental points, while the SU(2) curve has a different shape 
which cannot be forced to go through all the error bars. lkro examples of nuclei with 
B(E2) values consistent with both symmetries (although SU,(2) gives better fits than 
SU(2)) are given in table 4. In table 5 we also give the parameter values obtained 
from fitting the energy levels of the ground state bands of the nuclei appearing in 
tables 1 4  using the SUq(2) formula (11). Several comments are now relevant: 

(i) For a given nucleus the value of the parameter T obtained from fitting the 
B(E2) values among the levels of the ground-state band should be equal to the value 
obtained from fitting the energy levels of the ground-state band. In table 5 it is 
c!ec !hit !he !VG vc!~es cre simi!er, c!thcxg!! in mm! cases the v a ! ~  obtahe!! from 
the B(E2)s is smaller than that obtained from the spectra. It should be taken into 
account, however, that in most cases the number n' of levels fitted is different to 
(larger than) the number n of the B(E2) values fitted. In the single case in 
which TL = n', the two T values are almost identical, as they should be. 

(ii) One can certainly try different fitting procedures. Using the value of r 
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nble 3. Same as table 1, but for Data from [43]. The j = 28 point was not taken 
into account in the fits, because of its large uncertainty. The j = 10 and j = 16 points 
were not taken into account in the determination of the parameters in the SU&) case, 
but were included in the calculation of a. 

~ ~ 

i i 2  i6 3% (4Oj 475 479 2* 2z 
4 348 (22) 323 339 18 490 (50) 501 482 
6 380 (21) 361 428 20 510 (80) 533 485 
8 390 (40) 385 448 22 520 (120) 571 487 
10 360 (40) 406 460 '2 660 (130) 615 489 
12 410 (70) 426 469 26 670(190) 666 491 
14 450 (50) 448 475 28 lloo(500) 728 492 

A 1119 1361 1119 1361 
r 0.019 0.0 0.019 0.0 
a 36.97 85.46 36.97 85.46 
RI 3.304 3.304 

Table 4. Same as (able 1, but for '@Hf and %If. Data were taken from [44! and [45!. 

10 
12 
- 
A 
r 
a 
Rq 

128 (8) 131 142 2 
197 (15) 191 203 4 

zSo(120) 237 234 8 
254(180) 258 240 10 

205 (30) 217 223 6 

12 

655 709 
0.028 0.0 
8.58 14.28 

2.965 

158 154 (8) 141 

237(24) 234 249 
261 250 (2.5) 256 

ZOS(23) 205 226 

zo(40j 280 268 
3 M  (111) 307 273 

703 792 
0.029 0.0 
11.44 22.06 

3.110 

obtained from the B(E2) values for fitting the spectrum one gets a reasonably good 
description of it, although the squeezing of the spectrum is not as much as it should 
have been (with the exception of lUW). Using the value of T obtained from the 
spectrum for fitting the B(E2) values one obtains an increase more rapid than the 
one shown by the data (again with the exception of '@W). One can also try to make an 
overall fit of spectra and B(E2)s using a common value of 7.  Then both the squeezing 
of the spectrum and the rise of the B(E2)s can be accounted for reasonably well 
although not exactly. One should notice, however, that the experimental uncertainties 
of the B(E2)s are much higher than the uncertainties of the energy levels. 

of !he 
IBM predict a j(j  + 1) increase, while the SU,(2) model and the VMI model predict 
squeezing, which is seen experimentally. 

(iv) Concerning the B(E2) values, the VMI model makes no prediction, the rigid 
rotor predicts saturation at high j, the SU(3) limit of the IBM predicts a decrease, 
while the SU,(2) model predicts an increase. The evidence presented in this work 

@) C=nxr-$,g C C q y  lC;rC$, rig&ro'or E&+ 8.d the sqq 

Q 
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'hble 5. Parameters of least-square fils of levels of the pound-state bands of the nuclei 
appearing in tables 14 using the q-rotator with symmetry SUp(2). Data are taken from 
the same references as in tables 1-4 [39-45]. Equation (11) has been uscd, with Ea = 0. 
n' is the number of levels fitted (n' = 8 means that the levels with j = 2,4,. . . ,16 
were included in the fit). I (in keV) is the moment of inertia parameter, while 7' is the 
value of the deformation parameter obtained from fitting the energy levels. U (in keV) 
for these fits is calculated by a formula similar to (26). Ta facilitate wmparison, the 
number n of B(E2) values fitted for each nucleus and the corresponding deformation 
parameter T obtained from fitting the B(E2) values are also included. 

Nudeus n' 1/(2I) I' U n r  

"*Sm 8 16.6 0.057 29.56 5 0.039 
%d 8 17.0 0.058 28.70 5 0.037 
IUW 5 18.4 0.048 1.37 5 0.050 
1880s 6 23.9 0.071 10.22 5 0.044 
%U 15 7.1 0.029 21.74 13 0.019 
1%f 9 a0.s 0.062 59.13 5 0.028 
'%f 8 17.7 0.056 31.52 6 0.029 

supports the SUq(2) prediction, but clearly much more work, both experimental and 
analytical, is needed before final conclusions can be drawn. The modified SU(3) limit 

(v) Since E, has to be an increasing function of j ,  it is clear from (11) that the 
iijM described in ah supporis increase .he vaium ai xgh j ,  

condition 

must be fulfilled. This is in fact the case in both the rare-earth and the actinide 
regions. As seen in table 5, in the case of lszSm one has 7' = 0.057, which implies 
j < 26, this limiting value being higher than the highest observed j in ground-state 
bands in the rare-earth region. Similarly, for 216U one has 7' = 0.029, which requires 
j < 52, this limiting value again being higher than the highest observed j in ground- 
state bands in the actinide region. 

in  summary, the Sii  (ij symmetry, which is equivaient to the V M  d e i  as far 
as the description of rot&ional spectra is concerned, gives definite predictions for the 
B(E2) transition probabilities among levels of rotational bands. While the rigid rotor 
predicts saturation of the B(E2) values at high j and the IBM predicts a decrease, the 
SU,(2) symmetry predicts an increase, similar to the one predicted by a recently pro- 
posed [38] modification of the SU(3) limit of the IBM. A few examples supporting the 
SU,(2) prediction have been presented, although much more experimental informa- 
tion and analytical work is needed before final conclusions can be reached. The main 
gain from the use of the SU,(2) symmetry is that it provides a mathematical way for 
extending the VMI idea to B(E2) transition probabilities. It should be remembered, 
however, that the numerical coefficients in the SUq(2) series describing energy levels 
(13) are not exactly equal to their counterparts in the corresponding VMI series (17), 
&!mugh the p w e m  of j ( j +  1) and the pwers of the small parameter in correspnd- 
ing terms are the same. This might indicate that the present SU,(2) symmetry is not 
necessarily the optimal symmetry for describing the VMI effect and extending it to the 
description of B(E2) values. It would have been interesting to construct a symmetry 
giving exactly the same expansion for the energy as the VMI model. The recently 
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introduced method of generalized deformed oscillators [46] might be of interet in 
this respect. Work in this direction is in progress. 
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