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Abstract. The SU,(2) symmetry of the g¢-rotator model, which for rotational bands
predicts squeezing of the energy levels equivalent to the variable moment of inertia
(vMI) model, predicts an increase with angular momentum of the B(E2) transition
probabilities among these levels, while the rigid rotor model predicts saturation and the
interacting boson model (1BM) predicts a decrease. Some evidence supporting the SU,(2)
prediction is presented. The possible usefulness of the quantum algebraic method in
extending the vMI concept to B(E2) transition probabilities is pointed out.

Quantum algebras {1-4], which from the mathematical point of view are Hopf algebras
as pointed out in [3], are recently attracting much attention in physics, especiaily
after the introduction of the g-deformed harmonic oscillator [5-7]. Initially used
for solving the quantum Yang-Baxter equation [8,9)], they have now been used in
conformal field theories [10,11] and in the description of spin chains [12,13]. The
description of squeezed states in terms of ¢-deformed coherent states {14] has also
been attempted [15]. In nuclear physics, the g-rotator model with SU_(2) symmetry
has been successfully used for the description of rotational bands of deformed [16, 17]
and superdeformed [18] nuclei, its equivalence to the variable moment of inertia (vmr)
model [19] having been demonstrated [17]. The SU,(2) and SU,(1,1) symmetries
have also been successfully used for the description of rotational [20] and vibrational
[21,22] spectra of diatomic molecules. Much progress has also been made in the
g-generalization of the theory of angular momentum [23-30].

The Hamiltonian of the g-rotator model with the symmetry SU,(2) consists of
the second-order Casimir operator of SU,(2). This Hamiltonian can be rewritten
[17) as an expansion in powers of (7 + 1). In this form the equivalence of this
Hamiltonian to the vMi formula for energy levels becomes apparent. In addition the
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deformation parameter r (with ¢ = e'”) acquires a well defined physical meaning, by
being connected [17] to the softness parameter of the vMI model.

Although the vMi1 formalism is very successful in describing energy levels, no
extension of it to the description of the B(E2) transition probabilities connecting these
levels has been constructed. From the physical point of view, however, if deviations
from the rigid-rotator predictions are seen in the energy levels, deviations should also
be seen in the B(E2) transition probabilities connecting these levels. The SU_(2)
formalism prov:des the means for such a connection. The SU,(2) Symmetry predlcts

a continuous increase of the B(E2) values with angular momentum J» while the rigid
rotator predicts saturation at high j and the interacting boson model (1BM) ([31];
for recent overviews see [32,33]), the successful algebraic model for the description
of low-lying collective nuclear spectra in medium- and heavy-mass nuclei, predicts a
decrease. It is therefore of interest to check whether this prediction of the SU,(2)
symmetry is supported by the experimental data or not. A first test of this predlcnon
is the subject of this paper.

g-numbers are defined as

¢ —qF
(=] pp—" (1)
In the case of ¢ = ", where r is real, they take the form
_ sinh(rx)
B = ~ah () @

while in the case in which ¢ is a phase (g = e'”, with 7 real) they can be written as

sin(rz)
sin{7) ~

[z} = 3

It is clear that in both cases the g-numbers go to the usual numbers as ¢ — 1 (or
- MY
).

In the quantum case the generators of SU, (2) satisfy the commutation relations
[5-7]

[Jo,Je] =2y [Jed ] =[2J0]. (4)
The commutation relations take the well known classical form in the limit ¢ — 1.

The irreducible representation (irrep) D7 of highest weight j contains the highest
vector |57} which satisfies the equations

Jlify=0  Jlidy=ilidy  (ilin=1. ®)
The general basis vector with weight m of this irrep can be constructed through use

of the lowering operator J_

. j 4+ mj! el e
lm) =\ Y5 ) ©)
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where the g-factorial is defined as

[n)! = [n]ln - 1]{n = 2] --- [2][1]. ©)
The second-order Casimir operator of SU, (2) is [5-7]

ColSU(2)] = J_J, +[)lJp + 1] = T J_ + [l — 1] ®)
for which one has

Co[SU ()M, m) = (3115 + 1]l3, m). | ©

All of the above equations go to their classical counterparts for ¢ — 1 (7 — 0).
A g-rotor is a system with Hamiltonian [16-18)

H= %c,[suq(z)] +E, (10)

where I is the moment of inertia and E, is the bandhead energy (for ground-state
bands E; = 0). In the case of ¢ being a phase (¢ = €'7) one obtains

1 sin(rj)sin(r(j + 1)
27 sin?(r)

By = o-lilli + 1]+ By = +E. ()

If ¢ is real (q = e7), the trigonometric functions in (11) should be substituted by

hyperbolic ones. It should be noticed that this Hamiltonian, which is a scalar under

SU (2), is also a scalar under SU(2) [34], and that the quantum number ; appearing
in (11) is the usual SU(2) angular momentum [34].

By making Taylor expansions of the quantities in the numerator of (11), collecting
together the terms containing the same powers of j(j + 1) (all other terms cancel
out) and finally summing up the coefficients of each power one obtains the following
series [17].

E, = Eﬁ%m(jo(rmm—ra'1<~r)(:f(f+1))2+§rzjz<r)u(j+ 1y
— PG+ D) + GG+ DP =) 12)

where j, (7) are the spherical Bessel functions of the first kind [35]. For small values

of 7 one can further expand the spherical Bessel functions appearing in (12). Keeping
only the lowest-order term in each expansion one obtains

r? 4
Ej=Bot 5 ((j(.f F1)- 266D+ 226G+ )

3
- GG D+ e GG P = ). (13)

This result is of the form

E;=Ey+ Aj(G+1)+ BUG+ 1D+ CULG+ 1))+ DG+ 1)) + - (14)
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which is the expansion in terms of powers of j(j + 1) used for fitting experimental
rotational spectra [36]. Empirically it is known that the coefficients A, B, C, D, .
have alternating signs, starting with A positive. In addition, each coefficient is smaller
than the preceding one by about three orders of magnitude.

Equation (11) has been found suitable for the description of rotational spectra
[16,17] with r around 0.03. The pattern of alternating signs is already present in (13).
For = around 0.03 the order of magmtude of the coefficients is also the correct one,
since each term oontams a factor 72 more than the previous one. For = in the
region of 0.03, r is of the order of 10~3, as it should be. It is clear therefore
that (13) is suitable for fitting rotational spectra, since its coefficients have the same
characteristics as the empirical coefficients of (14). Examples of fits and parameter
values are given in [16,17]. In all cases the fits are of very good accuracy.

The same kind of expansion can be obtained in the framework of the vmi [19]

44444

model. Ia lﬂlb #wiodel the lt‘«VElb of the gTDllﬂU'b‘LdlB Yand are glven 'IJ)’

_ iU+ 1) 2
where C and @, are the two free parameters of the model, the latter being the
ground-state moment of inertia. The moment of inertia for each j is determined
from the variational condition

32

3605

=0. (16)

One can obtain [17] the following expansion for the energy:

1 LGGHDY | GGHDY (G +1)*
By = 55, (U + -5 3007 + ooyt ~* Goegr * ) D

It is known [19] that C' and ©, take on positive values, while

1
o= 5503 &3 (18)
is the softness parameter, which for rotational nuclei is of the order of 10-3 [19].
Thus the coefficients of the expansion of (17) have the proper signs and orders of
magnitude.

Comparing (13) and (17) we see that both expansions have the same form. The
moment of inertia parameter I of (13) corresponds to the ground-state moement of
inertia 9 of (17). The small parameter of the expansion is 7% in the first case,
while it is the softness parameter 1/(2C@3) in the second. When these formulae
are used for fitting experimental data, the agreement between 1/(21) and 1/(29,)
is very good, as is the agreement between 7 and o. Therefore the extra parameter
of the SU,(2) model (the deformation parameter 7) turns out to have a well defined
physical meamng, by being related to the softness parameter of the vMI model,

It should be noted that for real ¢ the coefficients of the expansion similar to (13)
are all positive, so that the corresponding spectrum increases more rapidly than the
J(7 + 1) rule, thus being unable to fit the experimental data, in which an increase
slower than the j(j + 1) rule is observed.
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The stretching effect present in rotational energy levels, which can equally well be
described in terms of the vM1 model and the SU, (2) symmetry, should also manifest
itself in the B(E2) transition probabllltles among these levels. If deviations from
the SU(2) symmetry are observed in the energy levels of a band, relevant deviations
should also appear in the B(E2) transitions connecting them. In the case of the VMi
model no way has been found for making predictions for the B(E2) transition prob-
abilities connecting the levels of a collective band. The SU_(2) symmetry naturally
provides such a link. In rotational bands one has [37]

B(E2:j+2—j)= E;Qﬁlciﬁfflz {19

ie. the B(E2) transition probability depends on the Clebsch-Gordan coefficient of
SU(2), while Q3 is the intrinsic electric quadrupole moment and k is the projection
of the anguiar momentum j on the symmetry axis of the nucieus in the body-fixed
frame. For k = 0 bands one then has [37]

5 .3 G+1)(J+2)
167 02 (27 + 3)(25 + 5) (20

which gives the well known saturation of the B(E2) values with increasing j.
In the case of the SU(3) limit of the 1BM, which is the limit applicable to deformed
nuclei, the corresponding expression is [31]

23 U+ +2) (2N-7)(2N+j+3)
2(27 + 3)(2; + 5) (2N +3/2)?

where N is the total number of bosons, Instead of saturation one then gets a decrease
of the B(E2) values at high j, which finally reach zero at j = 2V, This is a well
known disadvantage of the simplest version of the model (1BM-1) due to the small
number of collective bosons—s (5 = 0) and d (j = 2)—taken into account. It can
be corrected by the inclusion of higher bosons (¢ (f = 4), ¢ (j = 6), etc), which
approximately restore saturation (see [32,33] for a full list of references).

Another way to avoid the problem of decreasing B(E2)s in the SU(3) limit of
the 1BM at high j is the recently proposed [38] transition from the compact SU(3)
algebra to the non-compact SL(3,R) algebra. The angular momentum at which this
transition takes place is fitted to experiment, In this way an increase of the B(E2)
;rs%lues at high j is predicted, which agrees well {38] with the experimental data for

U.

In order to derive a formula similar to (20) in the SUq(2) case, one needs
[0 UCVB!.UD an qu\‘) dﬂgllldl' lTl.U[IlUlllUlll I.[ll:}UIy IIIUUULiUlU [(STRI8) ¢ Upt:]'d.lUI'b IU'I
the SU _(2) algebra are already defined [23-28], and the g-deformed version of the
ngner-Eckart theorem, needed in the derivation of the g-generalization of (19),
is also known [29,30]. In addition, the g-deformed versions of Clebsch~Gordan
coefficients, 3-j symbols, 6-; symbols and their inter-relations are known {23-30). It
turns out that an equation similar to (19) holds in the g-deformed case, the only
difference being that the Clebsch-Gordan coefficient of the SU,(2) algebra must be
used instead. These coefficients have the form [24,28]

42,25 _ BIAlli -k +2li—k+1][j +k+1]lj + k+2]
ChRY = qzk\[ 21125 + 227 + 3][27 + 4112/ + 5] (22)

B(E2:j+2—j)= 7 Qo (21)
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where g-numbers are defined as before. For k& = () bands one then has

5 o2 [314)l5 + 115 + 21

By(B2: 542~ 0) = 15 Qo mr 3 2llz; + 812 + A2+ 51 @)
For ¢ = ¢ this equation takes the form
_BG{EZ;j+2—>j)
= Qo(sm(Sr) sin(47)(sin(7(J + 1)) (sin(r(F + 2)))?)
X (sm(2‘r) sin{7)sin(7(2j + 2)) sin(r(2j + 3))
x sin(7(2j + 4))sin(7(2j + 5)))7!. (24)

Before attempting any comparison to experimental data, it is useful to get an idea
of the behaviour of this expression as a function of j, especially for the small values
of r found appropriate for the description of ground-state spectra. Expanding all
functions and keeping corrections of the leading order in + oaly, one has

. - 2

@i +a)Z +5)\ B

5

B(E2:j+2—j) = 00—

We see that the extra factor, which depends on 72, contributes an extra increase
with j, while the usual SU(2) expression reaches saturation at high j and the 1BM
even predicts a decrease.

Is there any experimental evidence for such an increase? In order to answer
this question one should discover cases in which the data will be consistent with the
8U, (2) expression but inconsistent with the classical SU(2) expression. {The opposite
cannot happen, since the classical expression is obtained from the quantum expression
for the special parameter value 7 = 0.) Since error bars of B(E2) values are usually
large, in most cases both symmetries are consistent with the data. One should expect
the differences to show up more clearly in two cases:

(i) In rare-earth nuclei not very much deformed (i.e. with an R, = E,/E, ratio
around 3.0). These should be deformed enough so that the SU_(2) symmetry will be
able to describe them having, however, at the same time values of r not very small.
Since in several of these nuclei backbending (or upbending) occurs at j = 14 or 16,
one can expect only 5 or 6 experimental points with which to compare the theoretical
predictions.

(ii) In the actinide region no backbending occurs up to around j == 30, so that
this is a better test ground for the two symmetries. However, most nuclei in this
region are well deformed, so that small values of r should be expected, making the
distinction between the two theoretical predictions difficult.

A few characteristic examples (four rare earths and an actinide) are given in
tables 1-3. In all cases a least-square fit was obtained, the quality of which is mea-
sured by

Jmax
a_\jlz(B(Ez §42= )~ BE2Z:j4+2=3)y)?  (26)

Jein
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Table 1. B(E2: j — j — 2) transition probabilities (in Weisskopf units) for ¥2Sm and
1%Gd. Data were taken from [39] and [40] respectively. The quantities in parentheses
indicate uncertainties. The SU,(2) fit was obtained using (24). o is given by (26).

j 152gm ISZSm 1ssz 154(~,d 154 (39 154 Gd
exp SUL(2) SUR) exp SUL(2)  SUQ)

2 143 (3) 142 166 157 (2) 163 187

i 200(3) 210 237 245 (8) 240 267

6 245(5) 246 261 284 (14) 279 295

8  285(14) 280 273 31 (17) 315 308
10 32030 322 280 361 (33) 358 317
A 07 820 810 936
T 0.039 0. U 0.037 0.0
o 242 25.50 . 473 26.44
R, 3.000 3.015

Table 2. Same as table 1, but for 134W and '¥0s, Data were taken from [41] and [42].

i 184y 184y 1849y 1880yg 1880y 18g
exp SU{2y Sy exp SULDY SN2

2 119 (3) 106 137 76 (3) 75 92

4 160 (14) 160 1% 121 6) 113 131

6 183 (10) 195 216 131 134 144

8 218@21) 5 226 146 (24) 156 151
10 202 (60) 292 232 190 (50) 185 155
A 524 686 374 458

T 0.050 0.0 0.044 00
o 797 35.89 6.40 18.78
Ry 3274 3.083

where n is the number of points used in the fit. The overall scale A = SQOI (16m)
has been treated as a free parameter in both SU (2) and SU(2), while in SU,(2)
the deformation parameter = was also free. In all cases it is clear that the SUq 2
curve follows the experimental points, while the SU(2) curve has a different shape
which cannot be forced to go through all the error bars. Two examples of nuclei with
B(E2) values consistent with both symmetries (although SU,(2) gives better fits than
SU(2)) are given in table 4. In table 5 we also give the parameter values obtained
from fitting the energy levels of the ground state bands of the nuclei appearing in
tables 1-4 using the SU_(2) formula (11). Several comments are now relevant:

(i) For a given nucleus the value of the parameter r obtained from fitting the
B(E2) values among the levels of the ground-state band should be equal to the value
obtained from fitting the energy levels of the ground-state band. In table 5 it is
clear that the two values are similar, although in most cases the value obtained from
the B(E2)s is smaller than that obtained from the spectra. It should be taken into
account, however, that in most cases the number »’ of levels fitted is different o
(larger than) the number n of the B(E2) values fitted. In the single case ("*W) in
which n» = »', the two 7 values are almost identical, as they should be.

(i) One can certainly try different fitting procedures. Using the value of =



3282 D Bonatsos et al

Table 3. Same as table 1, but for 261J, Data from [43]. The j = 28 point was not taken
into account in the fits, because of its large uncertainty. The j = 10 and j = 16 points
were not taken into account in the determination of the parameters in the SU,(2) case,
but were included in the calculation of o.

J L6y 86y 26y j p 3 § 2%y By
exp 5Uqg(2)  SUQR) exp SUL(2)  SUQR)
2 246 (10) 224 272 i6 380 (40) 473 479
4 348(22) 33 389 18 490 (50) 501 482
6 380 (21) 361 428 20 510 (80) 533 485
8 390 (40) 385 448 2 520 (120) 1) | 487
10 360 {40) 406 460 24 660 (130) 615 489
12 410 (70) 426 469 26 670 (190) 666 491
14 450 (50) 448 475 28 1100 (500) 728 492
A 1119 1361 1119 1361
T 0.019 0.0 0.019 0.0
o 36.97 85.46 3697 85.46
Ry 3.304 3.304

Table 4. Same as table 1, but for ¥6Hf and 1%®Hf. Data were taken from [44] and [45].

J 166H_f 166 3¢ 166Hf J 168 yf 168H_f 168 4f
exp SUq (2) SU(Z) . exp SU, (2) SU(2)

2 128 (8 131 142 2 154 (8) 141 158

4 197(15) 191 203 4 208(W) WS 226

6 205 (30} 217 223 6 237 (24) 234 249

8 250 (120) 237 234 8 250 (25) 256 261
10 254 (180) 258 240 10 260 (40) 280 268
12 12 320 (111) 307 273
A 655 709 703 192

T 0.028 0.0 0.029 0.0
c 8.58 14.28 11.44 22.06
Ry 2.965 3.110

obtained from the B(E2) values for fitting the spectrum one gets a reasonably good
description of it, although the squeezing of the spectrum is not as much as it should
have been (with the exception of W), Using the value of 7 obtained from the
spectrum for fitting the B(E2) values one obtains an increase more rapid than the
one shown by the data (again with the exception of '®W). One can also try to make an
overall fit of spectra and B(E2)s using 2 common value of =. Then both the squeezing
of the spectrum and the rise of the B(E2)s can be accounted for reasonably well
although not exactly. One should notice, however, that the experimental uncertainties
of the B(E2)s are much higher than the uncertainties of the energy levels.

iy OCnneoening anarav lovale the rigid_rator model and the ST limit of the
\lu’ ATV lll‘ls Ullulw B ¥ Wiy Lilks l‘sulu BAFAG/E  ABEULAL-E LANARGE  LALW u\.t\d’ ALEERAY WSA  LEAW

1BM predict a j(j + 1) increase, while the SU_(2) model and the vMI model predict
squeezing, which is seen experimentally.

8 (iv) Concerning the B(E2) values, the vM1 model makes no prediction, the rigid
rotor predicts saturation at high j, the SU(3) limit of the 1BM predicts a decrease,
while the SU_(2) model predicts an increase. The evidence presented in this work
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Table 5. Parameters of least-square fits of levels of the ground-state bands of the nuclei
appearing in tables 1-4 using the g-Totator with symmetry SU,(2). Data are taken from
the same references as in tables 1-4 [39-45]. Equation (11) has been used, with Eq = 0.
n’ is the number of levels fitted (n" = 8 means that the levels with j = 2,4,...,16
were included in the fit). I (in keV) is the moment of inertia parameter, while = is the
value of the deformation parameter obtained from fitting the energy levels. o (in keV)
for these fits is calculated by a formula similar to (26). To facilitate comparison, the
number n of B(E2) values fitted for each nucleus and the comesponding deformaticn
parameter T cobtained from fitting the B(E2) values are also included.

Nucleus n' 1/(2I) +' o n r

152gm 8 166 0057 2956 5 0039
154G 8 170 0058  28.70 5 0037
184wy 5 184 0.048 1.37 5 0,050
18305 6 239 0071 1022 5 0044
BoYy 15 71 0029 2174 13 0019
1661 5f 9 205 0062 59.13 5 0028
16831¢ B 177 0056 3152 6 002

supports the SU_(2) prediction, but clearly much more work, both experimental and
analytical, is needed before final conclusions can be drawn. The modified SU(3) limit
of iBM described in [38] also supporis ihe increase of ihe bu:m) values ai high j.

(v) Since E; has to be an increasing function of j, it is clear from (11) that the

condition
r(i+1)sm/2 27

must be fulfilled. This is in fact the case in both the rare-earth and the actinide
regions. As seen in table 5, in the case of %2Sm one has ' = 0.057, which implies
7 £ 26, this limiting value being higher than the highest observed j in ground-state
bands in the rare-earth region. Similarly, for 26U one has 7' = 0.029, which requires
7 € 52, this limiting value again being higher than the highest observed j in ground-
state bands in the actinide region.

In summary, the SU,(2) symmetry, which is equivalent to the vMI model as far
as the description of rotatlonal spectra is concerned, gives definite predictions for the
B(E2) transition probabilities among levels of rotational bands. While the rigid rotor
predicts saturation of the B(E2) values at high j and the 1BM predicts a decrease, the
SU,(2) symmetry predicts an increase, similar to the one predicted by a recently pro-
posed [38] modification of the SU(3) limit of the 1BM. A few examples supporting the
SU,(2) prediction have been presented, although much more experimental informa-
tion and analytical work is needed before final conclusions can be reached. The main
gain from the use of the SU,(2) symmetry is that it provides a mathematical way for
extending the vMI idea to B(E2) transition probabilities. It should be remembered,
however, that the numerical coefficients in the SU (2) series describing energy levels
(13) are not exactly equal to their counterparts in the corresponding VMI series (17),
although the nowers of 7(j+1) and the powers of the small parameter in correspond-
ing terms are the same. This n‘ught indicate that the present SU,(2) symmetry is not
necessarily the optimal symmetry for describing the vmi effect and extending it to the
description of B(E2) values. It would have been interesting to construct & syminetry
giving exactly the same expansion for the energy as the vMi model. The recently
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introduced method of generalized deformed oscillators [46] might be of interest in
this respect. Work in this direction is in progress.
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